20081120/数量单位的表述

一=1×10^0
十=1×10^1
百=1×10^2
千=1×10^3
万=1×10^4
亿=1×10^8
兆=1×10^12
京=1×10^16
垓=1×10^20
秭=1×10^24
穣=1×10^28
沟=1×10^32
涧=1×10^36
正=1×10^40
载=1×10^44
极=1×10^48
恒河沙=1×10^52
阿僧祇=1×10^56
那由他=1×10^60
不可思议=1×10^64
无量大数=1×10^68
—-
分=1×10^-1
厘=1×10^-2
毫=1×10^-3
丝=1×10^-4
忽=1×10^-5
微=1×10^-6
纤=1×10^-7
沙=1×10^-8
尘=1×10^-9
埃=1×10^-10
渺=1×10^-11
莫=1×10^-12
模糊=1×10^-13
逡巡=1×10^-14
须臾=1×10^-15
瞬息=1×10^-16
弹指=1×10^-17
刹那=1×10^-18
六德=1×10^-19
空虚=1×10^-20
清静=1×10^-21

http://www.gaforum.org/showthread.php?t=92013


个十百千万….兆……然后咧?

中英翻啊
完全不知道要读啥
于是决定先看课本
然后发现有一页是在介绍各种不同的数量单位

有个、十、百、千、万、十万、百万、千万、
亿、十亿、百亿、千亿、兆、十兆、百兆、
千兆…然后咧?

我们好像从小到大只听过最大的单位就是“兆”
但是,
万一有个数量超过了兆,要怎么讲呢?

上yahoo知识找
结果还真被我找到了,
原来还有单位比兆还大的,
以下是网路上的原文:

‘就整数名称而言,
 由小到大依次为
 一、十、百、千、万、亿、兆、
 京、垓、秭、穣、沟、涧、正、
 载、极、恒河沙、阿僧祇、那由他、
 不可思议、无量大数,
 万以下“十进位”,万以后则为“万进位”,
 如万万为亿,万亿为兆、万京为垓;
 小数点以下为“十退位”,
 名称依次为
 分、厘、毫、丝、忽、微、纤、沙、
 尘、埃、渺、莫、模糊、逡巡、须臾、
 瞬息、弹指、刹那、六德、空虚、清静。
 如以阿拉伯数字表示,整数万是十的四次方、
 亿是十的八次方、兆是十的十二次方、
 京是十的十六次方,
 最后“无量大数”是十的六十八次方;
 小数点以下分是十的负一次方,
 丝是十的负四次方,
 沙是十的负八次方,
 最后“清静”是十的负二十一次方;
 例如“微米”就是十的负六次方米,
 “次微米”实际就是“纤米”,
 也就等于十的负七次方米。’

真是恐怖…
真不知道古代的人在想什么
什么阿僧衹来着的,
那真的是中文吗?
如果我们的钱能够到一“那由他”的话,
大概就可以把地球买下来了吧 哈哈

原来“不可思议”是数量单位名啊
现在才知道
是因为这个单位太大了
所以引申为很令人难以置信的意思吗?

我怎么不知道弹指、刹那、空虚等字词
原来也是数量单位名啊?
是因为太小了,
所以引申做很快的意思吗?

真是令人大开眼界啊
(茶)

http://www.wretch.cc/blog/madias/3285323


THE DECIMAL SYSTEM FLOURISHED IN INDIA : Can you believe? here are proof
__________________________________________________________________

100 BCE…..

“It was India that gave us the ingenious method of expressing all numbers by means of ten symbols ( Decimal System)…
a profound and important idea which escaped the genius of Archimedes and Apollonius, two of the greatest men produced by antiquity,”

LA PLACE

The highest prefix used for raising 10 to a power in today’s maths, is ‘D’ for 10 upon 30 ….,from Greek Deca..( we can not write here exactly).While, as early as 100 BCE Indian Mathematicians had exact names for figures upto 10 upon 53!!!!!!!!!!!!!!!!!
which means in simple language.. 10x 10x10x10x10 …. 53 times.!!!!
I can prove it !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

See the symbols used for it, given hereinbelow:
_______________________________________________

EKAM = 1
DASHKAM = 10
SHATAM = 100 ( 2 upon 10 (10×10)
SAHASTRAM = 1000 ( 3 upon 10 (10x10x10)
DASHASAHASTRAM = 10000 ( 4 upon 10 (10x10x10x10)
LAKSHAHA = 100000 ( 5 upon 10)
DASHALAKSHAHA = 1000000 ( 6 upon 10)
KOTIHI = 10000000 ( 7 upon 10)
AYUTAM = 100000000 ( 9 upon 10)
NIYUTAM = 1000000000 ( 11 upon 10)
KANKARAM = 10000000000 ( 13 upon 10)
VIVARAM = 100000000000 ( 15 uopn 10)
PARARDHA ( 17 upon 10)
NIVAHAHA ( 19 upon 10)…..
………
Rest are ………UTSANGAHA, BAHULAM,NAGBALAHA,TITILAMBAM,VYAVASTHANA,PRAGNAPTIHI,HETUHEELAM,
KARAHUHU,HETVINDREEYAM,SAMAPTA LAMBHAHA,GANANAGATIHI,NIRAVADYAM,
MUDRABALAM,SARVABALAM,VISHAMAGNAGATIHI,SARVAGNAHA,VIBHUTANGAMA,
TALLAKSHANAM…………..
TALLAKSHANAM means 10x10x10x10x10x10x10x………53 times..!!!

You will be surprised to know that in ANUYOGDWAR SUTRA written in 100 BCE, one numeral is raised as high as 10 raised to 140 ( 10x10x10…….140 times)..
Conti………8
http://www.moneycontrol.com/india/messageboardblog//viewtopicmessages/7843


Raising 10 to the Power of 53

The highest prefix used for raising 10 to a power in today’s maths is ‘D’ for 10 to a power of 30 (from Greek Deca). While, as early as 100 BCE Indian Mathematicians had exact names for figures upto 10 to the power of 53.

ekam =1
dashakam =10
shatam =100 (10 to the power of 10)
sahasram =1000 (10 power of 3)
dashasahasram =10000 (10 power of 4)
lakshaha =100000 (10 power of 5)
dashalakshaha =1000000 (10 power of 6)
kotihi =10000000 (10 power of 7)
ayutam =1000000000 (10 power of 9)
niyutam = (10 power of 11)
kankaram = (10 power of 13)
vivaram = (10 power of 15)
paraardhaha = (10 power of 17)
nivahaaha = (10 power of 19)
utsangaha = (10 power of 21)
bahulam = (10 power of 23)
naagbaalaha = (10 power of 25)
titilambam = (10 power of 27)
vyavasthaana

pragnaptihi = (10 power of 29)
hetuheelam = (10 power of 31)
karahuhu = (10 power of 33)
hetvindreeyam = (10 power of 35)
samaapta lambhaha = (10 power of 37)
gananaagatihi) = (10 power of 39)
niravadyam = (10 power of 41)
mudraabaalam = (10 power of 43)
sarvabaalam = (10 power of 45)
vishamagnagatihi = (10 power of 47)
sarvagnaha = (10 power of 49)
vibhutangamaa = (10 power of 51)
tallaakshanam = (10 power of 53)

(In Anuyogdwaar Sutra written in 100 BCE one
numeral is raised as high as 10 to the power of 140).

Leave a Comment

电子邮件地址不会被公开。 必填项已用*标注